Wikle, C.K. (2019). Comparison of deep neural networks and deep hierarchical models for spatio-temporal data. Journal of Agricultural, Biological and Environmental Statistics, 24, 175–203. https://doi.org/10.1007/s13253-019-00361-7.

Bradley, J.R., Holan, S.H., and Wikle, C.K. (2020). Bayesian hierarchical models with conjugate full-conditional distributions for dependent data from the natural exponential family. Journal of the American Statistical Association, 115, 2037–2052. https://doi.org/10.1080/01621459.2019.1677471.

Bradley, J.R., Wikle, C.K., and Holan, S.H. (2020). Hierarchical models for spatial data with errors that are correlated with the latent process. Statistica Sinica, 30, 81-109. https://doi.org/10.5705/SS.202016.0230.

Cressie, N. and Suesse, T. (2020). Great expectations and even greater exceedances from spatially referenced data. Spatial Statistics, 37, 100420. https://doi.org/10.1016/j.spasta.2020.100420.

Cressie, N. and Wikle, C.K. (2020). Measuring, mapping, and uncertainty quantification in the space-time cube. Revista Matemática Complutense, 33, 643-660. https://doi.org/10.1007/s13163-020-00359-7.

Hooten, M.B., Wikle, C.K., and M.R. Schwob, M.R. (2020). Statistical implementations of agent-based demographic models. International Statistical Review, 88, 441–461. https://doi.org/10.1111/insr.12399.

North, J.S., Schliep, E.M., and Wikle, C.K. (2020). On the spatial and temporal shift in the archetypal seasonal temperature cycle as driven by annual and semi-annual harmonic. https://arxiv.org/abs/2003.06924.

Zammit-Mangion, A., Ng, T.L.J., Vu, Q., and Filippone, M. (2020). Deep compositional spatial models. https://arxiv.org/abs/1906.02840.

Zammit-Mangion, A. and Rougier, J. (2020). Multi-scale process modelling and distributed computation for spatial data. Statistics and Computing, 30, 1609-1627. https://doi.org/10.1007/s11222-020-09962-6.

Zammit-Mangion, A. and Wikle, C.K. (2020). Deep integro-difference equation models for spatio-temporal forecasting. Spatial Statistics, 37, 100408. https://doi.org/10.1016/j.spasta.2020.100408.

Zhang, B. and Cressie, N. (2020). Bayesian inference of spatio-temporal changes of Arctic sea ice. Bayesian Analysis, 15, 605-631. https://doi.org/10.1214/20-BA1209.

Cressie, N. and Moores, M.T. (2021). Spatial statistics. https://arxiv.org/abs/2105.07216.

Lucchesi, L.R., Kuhnert, P.M., and Wikle, C.K. (2021). Vizumap: an R package for visualising uncertainty in spatial data. Journal of Open Source Software, 6, 2409. https://doi.org/10.21105/joss.02409.

Raim, A.R., Holan, S.H., Bradley, J.R., and Wikle, C.K. (2021). An R package for spatio-temporal change of support, Computational Statistics, 36, 749–780. https://doi.org/10.1007/s00180-020-01029-4.

Vu, Q., Zammit-Mangion, A., and Cressie, N. (2021). Modeling nonstationary and asymmetric multivariate spatial covariances via deformations. https://arxiv.org/abs/2004.08724.