References

Auguie, B. (2016). gridExtra: Miscellaneous functions for “grid” graphics.
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: Methodology and applications with r. Chapman & Hall/CRC.
Bakar, K. S., & Sahu, S. K. (2015). spTimer: Spatio-temporal bayesian modelling using r. Journal of Statistical Software, 63(15), 1–32.
Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2015). Hierarchical modeling and analysis for spatial data (second). Chapman & Hall/CRC.
Bates, D., & Maechler, M. (2017). Matrix: Sparse and dense matrix classes and methods.
Becker, R. A., & Wilks, A. R. (2017). Maps: Draw geographical maps.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.
Berliner, L. M. (1996). Hierarchical Bayesian time series models. In K. M. Hanson & R. N. Silver (Eds.), Maximum entropy and bayesian methods (pp. 15–22). Kluwer.
Berliner, L. M., Milliff, R. F., & Wikle, C. K. (2003). Bayesian hierarchical modeling of air-sea interaction. Journal of Geophysical Research: Oceans, 108(C4).
Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (second). Springer. http://www.asdar-book.org/
Bivand, R., & Lewin-Koh, N. (2017). Maptools: Tools for reading and handling spatial objects.
Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal bayesian models with R-INLA. John Wiley & Sons.
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799.
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. L. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic Press.
Branstator, G., Mai, A., & Baumhefner, D. (1993). Identification of highly predictable flow elements for spatial filtering of medium- and extended-range numerical forecasts. Monthly Weather Review, 121(6), 1786–1802.
Briggs, W. M., & Levine, R. A. (1997). Wavelets and field forecast verification. Monthly Weather Review, 125(6), 1329–1341.
Bröcker, J., & Smith, L. A. (2007). Scoring probabilistic forecasts: The importance of being proper. Weather and Forecasting, 22(2), 382–388.
Brown, B. G., Gilleland, E., & Ebert, E. E. (2012). Forecasts of spatial fields. In I. T. Jolliffe & D. B. Stephenson (Eds.), Forecast verification: A practitioner’s guide in atmospheric science (2nd ed., pp. 95–117). John Wiley & Sons.
Carlin, B. P., & Louis, T. A. (2010). Bayes and empirical bayes methods for data analysis. Chapman & Hall/CRC.
Carroll, S. S., & Cressie, N. (1996). A comparison of geostatistical methodologies used to estimate snow water equivalent. Water Resources Bulletin, 32(2), 267–278.
Carvalho, A. (2016). An overview of applications of proper scoring rules. Decision Analysis, 13(4), 223–242.
Christakos, G. (2017). Spatiotemporal random fields: Theory and applications (second). Elsevier.
Cohen, A., & Jones, R. H. (1969). Regression on a random field. Journal of the American Statistical Association, 64(328), 1172–1182.
Congdon, P. (2006). Bayesian model choice based on monte carlo estimates of posterior model probabilities. Computational Statistics & Data Analysis, 50(2), 346–357.
Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15–18.
Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22, 239–252.
Cressie, N. (1993). Statistics for spatial data (revised). John Wiley & Sons.
Cressie, N., & Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94(448), 1330–1339.
Cressie, N., Shi, T., & Kang, E. L. (2010). Fixed rank filtering for spatio-temporal data. Journal of Computational and Graphical Statistics, 19(3), 724–745.
Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. John Wiley & Sons.
Crujeiras, R. M., Fernández-Casal, R., & González-Manteiga, W. (2010). Nonparametric test for separability of spatio-temporal processes. Environmetrics, 21(3-4), 382–399.
Dahl, D. B. (2016). Xtable: Export tables to LaTeX or HTML.
Delmonico, R. (2017). The philosophy of fractals.
Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. Chapman & Hall/CRC.
Diggle, P. J., & Ribeiro Jr., P. J. (2007). Model-based geostatistics. Springer.
Douc, R., Moulines, E., & Stoffer, D. (2014). Nonlinear time series: Theory, methods and applications with R examples. Chapman & Hall/CRC.
Ebert, E. E., & McBride, J. L. (2000). Verification of precipitation in weather systems: Determination of systematic errors. Journal of Hydrology, 239(1-4), 179–202.
Finley, A. O., Banerjee, S., & Carlin, B. P. (2007). spBayes: An r package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software, 19(4), 1–24.
Fisher, R. A. (1935). The design of experiments (8th ed.). Edinburgh: Oliver; Boyd.
Gamerman, D., & Lopes, H. F. (2006). Markov chain monte carlo: Stochastic simulation for bayesian inference (2nd ed.). Chapman & Hall/CRC.
Gelfand, A. E., & Ghosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach. Biometrika, 85(1), 1–11.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Chapman & Hall/CRC.
Genton, M. G., Castruccio, S., Crippa, P., Dutta, S., Huser, R., Sun, Y., & Vettori, S. (2015). Visuanimation in statistics. Stat, 4(1), 81–96.
Gilleland, E. (2018). SpatialVx: Spatial forecast verification.
Gilleland, E., Ahijevych, D. A., Brown, B. G., & Ebert, E. E. (2010). Verifying forecasts spatially. Bulletin of the American Meteorological Society, 91(10), 1365–1376.
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1, 125–151.
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.
González, I., & Déjean, S. (2012). CCA: Canonical correlation analysis.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. MIT Press.
Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., & Stadelmann, M. (2017). Expm: Matrix exponential, log, “etc”.
Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. R Journal, 8, 204–218. https://journal.r-project.org/archive/2016-1/na-pebesma-heuvelink.pdf
Hanks, E. M., Schliep, E. M., Hooten, M. B., & Hoeting, J. A. (2015). Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification. Environmetrics, 26(4), 243–254.
Harvey, A. C. (1993). Time series models (2nd ed.). MIT Press.
Haslett, J. (1999). A simple derivation of deletion diagnostic results for the general linear model with correlated errors. Journal of the Royal Statistical Society, Series B, 61(3), 603–609.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). Springer.
Henebry, G. M. (1995). Spatial model error analysis using autocorrelation indices. Ecological Modelling, 82(1), 75–91.
Henry, L., & Wickham, H. (2017). Purrr: Functional programming tools.
Hlavac, M. (2015). Stargazer: Well-formatted regression and summary statistics tables. Harvard University.
Hodges, J. S., & Reich, B. J. (2010). Adding spatially-correlated errors can mess up the fixed effect you love. American Statistician, 64(4), 325–334.
Hodges, J. S., & Sargent, D. J. (2001). Counting degrees of freedom in hierarchical and other richly-parameterised models. Biometrika, 88, 367–379.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 382–401.
Hooten, M. B., & Hobbs, N. (2015). A guide to bayesian model selection for ecologists. Ecological Monographs, 85(1), 3–28.
Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321–377.
Hovmöller, E. (1949). The trough-and-ridge diagram. Tellus, 1(2), 62–66.
Hughes, J., & Haran, M. (2013). Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. Journal of the Royal Statistical Society, Series B, 75(1), 139–159.
Jaeger, H. (2007). Echo state network. Scholarpedia, 2(9), 2330.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis. In Prentice Hall (3rd ed.). Prentice Hall.
Jordan, A., Krueger, F., & Lerch, S. (2017). scoringRules: Scoring rules for parametric and simulated distribution forecasts.
Jordan, A., Krüger, F., & Lerch, S. (2017). Evaluation of probabilistic forecasts with the scoringRules package. EGU General Assembly Conference Abstracts, 19, 3295.
Kahle, D., & Wickham, H. (2013). Ggmap: Spatial visualization with ggplot2. R Journal, 5(1), 144–161. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.
Kang, E. L., Liu, D., & Cressie, N. (2009). Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models. Computational Statistics & Data Analysis, 53(8), 3016–3032.
Kendall, M. G., & Stuart, A. (1969). The advanced theory of statistics (3rd ed., Vol. 1). Hafner.
Kornak, J., Irwin, M. E., & Cressie, N. (2006). Spatial point process models of defensive strategies: Detecting changes. Statistical Inference for Stochastic Processes, 9(1), 31–46.
Krainski, E. T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F., & Rue, H. (2019). Advanced spatial modeling with stochastic partial differential equations using r and INLA. Chapman; Hall/CRC.
Kuhnert, P. (2014). Editorial: Physical-statistical modelling. Environmetrics, 25, 201–202.
Kutner, H., M, Nachtsheim, C. J., & Neter, J. (2004). Applied multiple regression models. McGraw-Hill.
Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 963–974.
Lamigueiro, O. P. (2018). Displaying time series, spatial, and space-time data with r (2nd ed.). Chapman; Hall/CRC.
Laud, P. W., & Ibrahim, J. G. (1995). Predictive model selection. Journal of the Royal Statistical Society, Series B, 247–262.
Le, N. D., & Zidek, J. V. (2006). Statistical analysis of environmental space-time processes. Springer.
Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19), 1–25. http://www.jstatsoft.org/v63/i19/
Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B, 73(4), 423–498.
Lindstrom, J., Szpiro, A., Sampson, P. D., Bergen, S., & Oron, A. P. (2013). SpatioTemporal: Spatio-temporal model estimation.
Livezey, R. E., & Chen, W. Y. (1983). Statistical field significance and its determination by monte carlo techniques. Monthly Weather Review, 111(1), 46–59.
Lucchesi, L. R., & Wikle, C. K. (2017). Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation, and glyph rotation. Stat, 6, 292–302.
Lukoševičius, M. (2012). A practical guide to applying echo state networks. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural networks: Tricks of the trade (2nd ed., pp. 659–686). Springer.
Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127–149.
Lumley, T. (2017). Leaps: Regression subset selection.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
Mateu, J., & Müller, W. G. (2013). Spatio-temporal design: Advances in efficient data acquisition. John Wiley & Sons.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. Cambridge University Press.
McCulloch, C. E., & Searle, S. R. (2001). Generalized, linear, and mixed models. John Wiley & Sons.
McDermott, P. L., & Wikle, C. K. (2016). A model-based approach for analog spatio-temporal dynamic forecasting. Environmetrics, 27(2), 70–82.
McDermott, P. L., & Wikle, C. K. (2017). An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Stat, 6(1), 315–330.
McDermott, P. L., Wikle, C. K., & Millspaugh, J. (2018). A hierarchical spatiotemporal analog forecasting model for count data. Ecology and Evolution, 8(1), 790–800.
Micheas, A. C., Fox, N. I., Lack, S. A., & Wikle, C. K. (2007). Cell identification and verification of QPF ensembles using shape analysis techniques. Journal of Hydrology, 343(3-4), 105–116.
Milliff, R. F., Bonazzi, A., Wikle, C. K., Pinardi, N., & Berliner, L. M. (2011). Ocean ensemble forecasting. Part i: Ensemble mediterranean winds from a bayesian hierarchical model. Quarterly Journal of the Royal Meteorological Society, 137(657), 858–878.
Monahan, A. H., Fyfe, J. C., Ambaum, M. H., Stephenson, D. B., & North, G. R. (2009). Empirical orthogonal functions: The medium is the message. Journal of Climate, 22(24), 6501–6514.
Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015). Spatial and spatio-temporal geostatistical modeling and kriging. John Wiley & Sons.
Morrison, P., & Morrison, P. (1982). Powers of ten: About the relative size of things in the universe. Scientific American Library, distributed by WH Freeman.
Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8(2), 281–293.
Nakazono, Y. (2013). Strategic behavior of federal open market committee board members: Evidence from members’ forecasts. Journal of Economic Behavior & Organization, 93, 62–70.
NCAR – Research Applications Laboratory. (2015). Verification: Weather forecast verification utilities.
Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes.
Nychka, D., Furrer, R., Paige, J., & Sain, S. (2015). Fields: Tools for spatial data.
O’Hara-Wild, M. (2017). Ggquiver: Quiver plots for ’ggplot2’.
Obled, Ch., & Creutin, J. D. (1986). Some developments in the use of empirical orthogonal functions for mapping meteorological fields. Journal of Climate and Applied Meteorology, 25(9), 1189–1204.
Overholser, R., & Xu, R. (2014). Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures. Journal of Multivariate Analysis, 132, 160–170.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545–554.
Pebesma, E. (2012). spacetime: Spatio-temporal data in R. Journal of Statistical Software, 51(7), 1–30. http://www.jstatsoft.org/v51/i07/
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2017). nlme: Linear and nonlinear mixed effects models.
Prado, R., & West, M. (2010). Time series: Modeling, computation, and inference. Chapman & Hall/CRC.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
RESSTE Network et al. (2017). Analyzing spatio-temporal data with r: Everything you always wanted to know – but were afraid to ask. Journal de La Société Française de Statistique, 158, 124–158.
Robinson, D., & Hayes, A. (2018). Broom: Convert statistical analysis objects into tidy tibbles. https://CRAN.R-project.org/package=broom
Rue, H., & Held, L. (2005). Gaussian markov random fields: Theory and applications. Chapman & Hall/CRC.
Rue, H., Martino, S., & Chopin, N. (2009). Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. Journal of the Royal Statistical Society, Series B, 71(2), 319–392.
Sarkar, D. (2008). Lattice: Multivariate data visualization with r. Springer. http://lmdvr.r-forge.r-project.org
Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Chapman & Hall/CRC.
Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Monthly Weather Review, 143(4), 1321–1334.
Schott, J. R. (2017). Matrix analysis for statistics (3rd ed.). John Wiley & Sons.
Searle, S. R. (1982). Matrix algebra useful for statistics. John Wiley & Sons.
Shaddick, G., & Zidek, J. V. (2015). Spatio-temporal methods in environmental epidemiology. Chapman & Hall/CRC.
Shen, X., Huang, H.-C., & Cressie, N. (2002). Nonparametric hypothesis testing for a spatial signal. Journal of the American Statistical Association, 97(460), 1122–1140.
Sherman, M. (2011). Spatial statistics and spatio-temporal data: Covariance functions and directional properties. John Wiley & Sons.
Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253–264.
Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications with r examples (2nd ed.). Springer.
Siegert, S. (2017). SpecsVerification: Forecast verification routines for ensemble forecasts of weather and climate.
Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sørbye, S. H. (2017). Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science, 32(1), 1–28.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. van der. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64(4), 583–639.
Stanford, J. L., & Ziemke, J. R. (1994). Field (MAP) statistics. In J. Stanford & S. B. Vardeman (Eds.), Statistical methods for physical science (pp. 457–479). Academic Press.
Stevens, B., Duan, J., McWilliams, J. C., Münnich, M., & Neelin, J. D. (2002). Entrainment, rayleigh friction, and boundary layer winds over the tropical pacific. Journal of Climate, 15(1), 30–44.
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234–240.
Ver Hoef, J. M., & Boveng, P. L. (2015). Iterating on a single model is a viable alternative to multimodel inference. Journal of Wildlife Management, 79(5), 719–729.
Verbeke, G., & Molenberghs, G. (2009). Linear mixed models for longitudinal data. Springer.
Von Storch, H., & Zwiers, F. W. (2002). Statistical analysis in climate research. Cambridge University Press.
Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. John Wiley & Sons.
Weigel, A. P. (2012). Ensemble forecasts. In I. T. Jolliffe & D. B. Stephenson (Eds.), Forecast verification: A practitioner’s guide in atmospheric science (pp. 141–166). John Wiley & Sons.
Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1), 1–29. http://www.jstatsoft.org/v40/i01/
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed.). Springer.
Wickham, H., & Chang, W. (2017). Devtools: Tools to make developing r packages easier.
Wickham, H., Francois, R., Henry, L., & Müller, K. (2017). Dplyr: A grammar of data manipulation.
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. O’Reilly Media.
Wickham, H., & Henry, L. (2017). Tidyr: Easily tidy data with “spread()” and “gather()” functions.
Wikle, C. K., & Hooten, M. B. (2016). Hierarchical agent-based spatio-temporal dynamic models for discrete-valued data. In R. A. Davis, S. H. Holan, R. Lund, & N. Ravishanker (Eds.), Handbook of discrete-valued time series. Chapman & Hall/CRC.
Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). Academic Press.
Wood, S. N. (2017). Generalized additive models: An introduction with r (2nd ed.). Chapman & Hall/CRC.
Wu, C.-T., Gumpertz, M. L., & Boos, D. D. (2001). Comparison of GEE, MINQUE, ML, and REML estimating equations for normally distributed data. American Statistician, 55(2), 125–130.
Xie, Y. (2013). animation: An R package for creating animations and demonstrating statistical methods. Journal of Statistical Software, 53(1), 1–27. http://www.jstatsoft.org/v53/i01/
Xie, Y. (2015). Dynamic documents with r and knitr (second). Chapman & Hall/CRC.
Xu, K., Wikle, C. K., & Fox, N. I. (2005). A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. Journal of the American Statistical Association, 100(472), 1133–1144.
Zammit-Mangion, A. (2018a). FRK: Fixed rank kriging.
Zammit-Mangion, A. (2018b). IDE: Integro-difference equation spatio-temporal models.
Zammit-Mangion, A. (2018c). STRbook: Supplementary package for book on ST modelling with r.
Zammit-Mangion, A., & Huang, H.-C. (2015). EFDR: Wavelet-based enhanced FDR for signal detection in noisy images. https://CRAN.R-project.org/package=EFDR
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7–10. https://CRAN.R-project.org/doc/Rnews/
Zhang, J., Craigmile, P. F., & Cressie, N. (2008). Loss function approaches to predict a spatial quantile and its exceedance region. Technometrics, 50(2), 216–227.