References
Auguie, B. (2016). gridExtra: Miscellaneous functions for
“grid” graphics.
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point
patterns: Methodology and applications with r. Chapman &
Hall/CRC.
Bakar, K. S., & Sahu, S. K. (2015). spTimer: Spatio-temporal
bayesian modelling using r. Journal of Statistical Software,
63(15), 1–32.
Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2015).
Hierarchical modeling and analysis for spatial data (second).
Chapman & Hall/CRC.
Bates, D., & Maechler, M. (2017). Matrix: Sparse and dense
matrix classes and methods.
Becker, R. A., & Wilks, A. R. (2017). Maps: Draw geographical
maps.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society, Series B,
57, 289–300.
Berliner, L. M. (1996). Hierarchical Bayesian time series
models. In K. M. Hanson & R. N. Silver (Eds.), Maximum entropy
and bayesian methods (pp. 15–22). Kluwer.
Berliner, L. M., Milliff, R. F., & Wikle, C. K. (2003). Bayesian
hierarchical modeling of air-sea interaction. Journal of Geophysical
Research: Oceans, 108(C4).
Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied
spatial data analysis with
R (second). Springer. http://www.asdar-book.org/
Bivand, R., & Lewin-Koh, N. (2017). Maptools: Tools for reading
and handling spatial objects.
Blangiardo, M., & Cameletti, M. (2015). Spatial and
spatio-temporal bayesian models with R-INLA. John
Wiley & Sons.
Box, G. E. P. (1976). Science and statistics. Journal of the
American Statistical Association, 71(356), 791–799.
Box, G. E. P. (1979). Robustness in the strategy of scientific model
building. In R. L. Launer & G. L. Wilkinson (Eds.), Robustness
in statistics (pp. 201–236). Academic Press.
Branstator, G., Mai, A., & Baumhefner, D. (1993). Identification of
highly predictable flow elements for spatial filtering of medium- and
extended-range numerical forecasts. Monthly Weather Review,
121(6), 1786–1802.
Briggs, W. M., & Levine, R. A. (1997). Wavelets and field forecast
verification. Monthly Weather Review, 125(6),
1329–1341.
Bröcker, J., & Smith, L. A. (2007). Scoring probabilistic forecasts:
The importance of being proper. Weather and Forecasting,
22(2), 382–388.
Brown, B. G., Gilleland, E., & Ebert, E. E. (2012). Forecasts of
spatial fields. In I. T. Jolliffe & D. B. Stephenson (Eds.),
Forecast verification: A practitioner’s guide in atmospheric
science (2nd ed., pp. 95–117). John Wiley & Sons.
Carlin, B. P., & Louis, T. A. (2010). Bayes and empirical bayes
methods for data analysis. Chapman & Hall/CRC.
Carroll, S. S., & Cressie, N. (1996). A comparison of geostatistical
methodologies used to estimate snow water equivalent. Water
Resources Bulletin, 32(2), 267–278.
Carvalho, A. (2016). An overview of applications of proper scoring
rules. Decision Analysis, 13(4), 223–242.
Christakos, G. (2017). Spatiotemporal random fields: Theory and
applications (second). Elsevier.
Cohen, A., & Jones, R. H. (1969). Regression on a random field.
Journal of the American Statistical Association,
64(328), 1172–1182.
Congdon, P. (2006). Bayesian model choice based on monte carlo estimates
of posterior model probabilities. Computational Statistics &
Data Analysis, 50(2), 346–357.
Cook, R. D. (1977). Detection of influential observation in linear
regression. Technometrics, 19(1), 15–18.
Cressie, N. (1990). The origins of kriging. Mathematical
Geology, 22, 239–252.
Cressie, N. (1993). Statistics for spatial data (revised). John
Wiley & Sons.
Cressie, N., & Huang, H.-C. (1999). Classes of nonseparable,
spatio-temporal stationary covariance functions. Journal of the
American Statistical Association, 94(448), 1330–1339.
Cressie, N., Shi, T., & Kang, E. L. (2010). Fixed rank filtering for
spatio-temporal data. Journal of Computational and Graphical
Statistics, 19(3), 724–745.
Cressie, N., & Wikle, C. K. (2011). Statistics for
spatio-temporal data. John Wiley & Sons.
Crujeiras, R. M., Fernández-Casal, R., & González-Manteiga, W.
(2010). Nonparametric test for separability of spatio-temporal
processes. Environmetrics, 21(3-4), 382–399.
Dahl, D. B. (2016). Xtable: Export tables to LaTeX or HTML.
Delmonico, R. (2017). The philosophy of fractals.
Diggle, P. J. (2013). Statistical analysis of spatial and
spatio-temporal point patterns. Chapman & Hall/CRC.
Diggle, P. J., & Ribeiro Jr., P. J. (2007). Model-based
geostatistics. Springer.
Douc, R., Moulines, E., & Stoffer, D. (2014). Nonlinear time
series: Theory, methods and applications with R
examples. Chapman & Hall/CRC.
Ebert, E. E., & McBride, J. L. (2000). Verification of precipitation
in weather systems: Determination of systematic errors. Journal of
Hydrology, 239(1-4), 179–202.
Finley, A. O., Banerjee, S., & Carlin, B. P. (2007). spBayes: An r
package for univariate and multivariate hierarchical point-referenced
spatial models. Journal of Statistical Software,
19(4), 1–24.
Fisher, R. A. (1935). The design of experiments (8th ed.).
Edinburgh: Oliver; Boyd.
Gamerman, D., & Lopes, H. F. (2006). Markov chain monte carlo:
Stochastic simulation for bayesian inference (2nd ed.). Chapman
& Hall/CRC.
Gelfand, A. E., & Ghosh, S. K. (1998). Model choice: A minimum
posterior predictive loss approach. Biometrika, 85(1),
1–11.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2014). Bayesian data analysis (3rd ed.).
Chapman & Hall/CRC.
Genton, M. G., Castruccio, S., Crippa, P., Dutta, S., Huser, R., Sun,
Y., & Vettori, S. (2015). Visuanimation in statistics.
Stat, 4(1), 81–96.
Gilleland, E. (2018). SpatialVx: Spatial forecast verification.
Gilleland, E., Ahijevych, D. A., Brown, B. G., & Ebert, E. E.
(2010). Verifying forecasts spatially. Bulletin of the American
Meteorological Society, 91(10), 1365–1376.
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting.
Annual Review of Statistics and Its Application, 1,
125–151.
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring
rules, prediction, and estimation. Journal of the American
Statistical Association, 102(477), 359–378.
González, I., & Déjean, S. (2012). CCA: Canonical correlation
analysis.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016).
Deep learning. MIT Press.
Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., &
Stadelmann, M. (2017). Expm: Matrix exponential, log,
“etc”.
Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-temporal
interpolation using gstat. R Journal, 8, 204–218. https://journal.r-project.org/archive/2016-1/na-pebesma-heuvelink.pdf
Hanks, E. M., Schliep, E. M., Hooten, M. B., & Hoeting, J. A.
(2015). Restricted spatial regression in practice: Geostatistical
models, confounding, and robustness under model misspecification.
Environmetrics, 26(4), 243–254.
Harvey, A. C. (1993). Time series models (2nd ed.). MIT Press.
Haslett, J. (1999). A simple derivation of deletion diagnostic results
for the general linear model with correlated errors. Journal of the
Royal Statistical Society, Series B, 61(3), 603–609.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning (2nd ed.). Springer.
Henebry, G. M. (1995). Spatial model error analysis using
autocorrelation indices. Ecological Modelling, 82(1),
75–91.
Henry, L., & Wickham, H. (2017). Purrr: Functional programming
tools.
Hlavac, M. (2015). Stargazer: Well-formatted regression and summary
statistics tables. Harvard University.
Hodges, J. S., & Reich, B. J. (2010). Adding spatially-correlated
errors can mess up the fixed effect you love. American
Statistician, 64(4), 325–334.
Hodges, J. S., & Sargent, D. J. (2001). Counting degrees of freedom
in hierarchical and other richly-parameterised models.
Biometrika, 88, 367–379.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T.
(1999). Bayesian model averaging: A tutorial. Statistical
Science, 382–401.
Hooten, M. B., & Hobbs, N. (2015). A guide to bayesian model
selection for ecologists. Ecological Monographs,
85(1), 3–28.
Hotelling, H. (1936). Relations between two sets of variates.
Biometrika, 28(3/4), 321–377.
Hovmöller, E. (1949). The trough-and-ridge diagram. Tellus,
1(2), 62–66.
Hughes, J., & Haran, M. (2013). Dimension reduction and alleviation
of confounding for spatial generalized linear mixed models. Journal
of the Royal Statistical Society, Series B, 75(1),
139–159.
Jaeger, H. (2007). Echo state network. Scholarpedia,
2(9), 2330.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning. Springer.
Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate
statistical analysis. In Prentice Hall (3rd ed.). Prentice
Hall.
Jordan, A., Krueger, F., & Lerch, S. (2017). scoringRules:
Scoring rules for parametric and simulated distribution forecasts.
Jordan, A., Krüger, F., & Lerch, S. (2017). Evaluation of
probabilistic forecasts with the scoringRules package. EGU General
Assembly Conference Abstracts, 19, 3295.
Kahle, D., & Wickham, H. (2013). Ggmap: Spatial visualization with
ggplot2. R Journal, 5(1), 144–161. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82, 35–45.
Kang, E. L., Liu, D., & Cressie, N. (2009). Statistical analysis of
small-area data based on independence, spatial, non-hierarchical, and
hierarchical models. Computational Statistics & Data
Analysis, 53(8), 3016–3032.
Kendall, M. G., & Stuart, A. (1969). The advanced theory of
statistics (3rd ed., Vol. 1). Hafner.
Kornak, J., Irwin, M. E., & Cressie, N. (2006). Spatial point
process models of defensive strategies: Detecting changes.
Statistical Inference for Stochastic Processes, 9(1),
31–46.
Krainski, E. T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo,
D., Simpson, D., Lindgren, F., & Rue, H. (2019). Advanced
spatial modeling with stochastic partial differential equations using r
and INLA. Chapman; Hall/CRC.
Kuhnert, P. (2014). Editorial: Physical-statistical modelling.
Environmetrics, 25, 201–202.
Kutner, H., M, Nachtsheim, C. J., & Neter, J. (2004). Applied
multiple regression models. McGraw-Hill.
Laird, N. M., & Ware, J. H. (1982). Random-effects models for
longitudinal data. Biometrics, 963–974.
Lamigueiro, O. P. (2018). Displaying time series, spatial, and
space-time data with r (2nd ed.). Chapman; Hall/CRC.
Laud, P. W., & Ibrahim, J. G. (1995). Predictive model selection.
Journal of the Royal Statistical Society, Series B, 247–262.
Le, N. D., & Zidek, J. V. (2006). Statistical analysis of
environmental space-time processes. Springer.
Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with
R-INLA. Journal of Statistical
Software, 63(19), 1–25. http://www.jstatsoft.org/v63/i19/
Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link
between gaussian fields and gaussian markov random fields: The
stochastic partial differential equation approach. Journal of the
Royal Statistical Society, Series B, 73(4), 423–498.
Lindstrom, J., Szpiro, A., Sampson, P. D., Bergen, S., & Oron, A. P.
(2013). SpatioTemporal: Spatio-temporal model estimation.
Livezey, R. E., & Chen, W. Y. (1983). Statistical field significance
and its determination by monte carlo techniques. Monthly Weather
Review, 111(1), 46–59.
Lucchesi, L. R., & Wikle, C. K. (2017). Visualizing uncertainty in
areal data with bivariate choropleth maps, map pixelation, and glyph
rotation. Stat, 6, 292–302.
Lukoševičius, M. (2012). A practical guide to applying echo state
networks. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.),
Neural networks: Tricks of the trade (2nd ed., pp. 659–686).
Springer.
Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing
approaches to recurrent neural network training. Computer Science
Review, 3(3), 127–149.
Lumley, T. (2017). Leaps: Regression subset selection.
Lütkepohl, H. (2005). New introduction to multiple time series
analysis. Springer.
Mateu, J., & Müller, W. G. (2013). Spatio-temporal design:
Advances in efficient data acquisition. John Wiley & Sons.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models. Cambridge University Press.
McCulloch, C. E., & Searle, S. R. (2001). Generalized, linear,
and mixed models. John Wiley & Sons.
McDermott, P. L., & Wikle, C. K. (2016). A model-based approach for
analog spatio-temporal dynamic forecasting. Environmetrics,
27(2), 70–82.
McDermott, P. L., & Wikle, C. K. (2017). An ensemble quadratic echo
state network for non-linear spatio-temporal forecasting. Stat,
6(1), 315–330.
McDermott, P. L., Wikle, C. K., & Millspaugh, J. (2018). A
hierarchical spatiotemporal analog forecasting model for count data.
Ecology and Evolution, 8(1), 790–800.
Micheas, A. C., Fox, N. I., Lack, S. A., & Wikle, C. K. (2007). Cell
identification and verification of QPF ensembles using shape analysis
techniques. Journal of Hydrology, 343(3-4), 105–116.
Milliff, R. F., Bonazzi, A., Wikle, C. K., Pinardi, N., & Berliner,
L. M. (2011). Ocean ensemble forecasting. Part i: Ensemble mediterranean
winds from a bayesian hierarchical model. Quarterly Journal of the
Royal Meteorological Society, 137(657), 858–878.
Monahan, A. H., Fyfe, J. C., Ambaum, M. H., Stephenson, D. B., &
North, G. R. (2009). Empirical orthogonal functions: The medium is the
message. Journal of Climate, 22(24), 6501–6514.
Montero, J.-M., Fernández-Avilés, G., & Mateu, J. (2015).
Spatial and spatio-temporal geostatistical modeling and
kriging. John Wiley & Sons.
Morrison, P., & Morrison, P. (1982). Powers of ten: About the
relative size of things in the universe. Scientific American
Library, distributed by WH Freeman.
Murphy, A. H. (1993). What is a good forecast? An essay on the nature of
goodness in weather forecasting. Weather and Forecasting,
8(2), 281–293.
Nakazono, Y. (2013). Strategic behavior of federal open market committee
board members: Evidence from members’ forecasts. Journal of Economic
Behavior & Organization, 93, 62–70.
NCAR – Research Applications Laboratory. (2015). Verification:
Weather forecast verification utilities.
Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes.
Nychka, D., Furrer, R., Paige, J., & Sain, S. (2015). Fields:
Tools for spatial data.
O’Hara-Wild, M. (2017). Ggquiver: Quiver plots for ’ggplot2’.
Obled, Ch., & Creutin, J. D. (1986). Some developments in the use of
empirical orthogonal functions for mapping meteorological fields.
Journal of Climate and Applied Meteorology, 25(9),
1189–1204.
Overholser, R., & Xu, R. (2014). Effective degrees of freedom and
its application to conditional AIC for linear mixed-effects
models with correlated error structures. Journal of Multivariate
Analysis, 132, 160–170.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE:
Analyses of phylogenetics and evolution in
R language.
Bioinformatics, 20, 289–290.
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block
information when block sizes are unequal. Biometrika,
58(3), 545–554.
Pebesma, E. (2012). spacetime:
Spatio-temporal data in
R. Journal of Statistical
Software, 51(7), 1–30. http://www.jstatsoft.org/v51/i07/
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team.
(2017). nlme: Linear and nonlinear mixed
effects models.
Prado, R., & West, M. (2010). Time series: Modeling,
computation, and inference. Chapman & Hall/CRC.
R Core Team. (2018).
R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. https://www.R-project.org/
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian
processes for machine learning. MIT Press.
RESSTE Network et al. (2017). Analyzing spatio-temporal data with r:
Everything you always wanted to know – but were afraid to ask.
Journal de La Société Française de Statistique, 158,
124–158.
Robinson, D., & Hayes, A. (2018). Broom: Convert statistical
analysis objects into tidy tibbles. https://CRAN.R-project.org/package=broom
Rue, H., & Held, L. (2005). Gaussian markov random fields:
Theory and applications. Chapman & Hall/CRC.
Rue, H., Martino, S., & Chopin, N. (2009). Approximate bayesian
inference for latent gaussian models by using integrated nested laplace
approximations. Journal of the Royal Statistical Society, Series
B, 71(2), 319–392.
Sarkar, D. (2008). Lattice: Multivariate data visualization with
r. Springer. http://lmdvr.r-forge.r-project.org
Schabenberger, O., & Gotway, C. A. (2005). Statistical methods
for spatial data analysis. Chapman & Hall/CRC.
Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper
scoring rules for probabilistic forecasts of multivariate quantities.
Monthly Weather Review, 143(4), 1321–1334.
Schott, J. R. (2017). Matrix analysis for statistics (3rd ed.).
John Wiley & Sons.
Searle, S. R. (1982). Matrix algebra useful for statistics.
John Wiley & Sons.
Shaddick, G., & Zidek, J. V. (2015). Spatio-temporal methods in
environmental epidemiology. Chapman & Hall/CRC.
Shen, X., Huang, H.-C., & Cressie, N. (2002). Nonparametric
hypothesis testing for a spatial signal. Journal of the American
Statistical Association, 97(460), 1122–1140.
Sherman, M. (2011). Spatial statistics and spatio-temporal data:
Covariance functions and directional properties. John Wiley &
Sons.
Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series
smoothing and forecasting using the EM algorithm. Journal of Time
Series Analysis, 3(4), 253–264.
Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis
and its applications with r examples (2nd ed.). Springer.
Siegert, S. (2017). SpecsVerification: Forecast verification
routines for ensemble forecasts of weather and climate.
Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sørbye, S. H.
(2017). Penalising model component complexity: A principled, practical
approach to constructing priors. Statistical Science,
32(1), 1–28.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. van
der. (2002). Bayesian measures of model complexity and fit. Journal
of the Royal Statistical Society, Series B, 64(4),
583–639.
Stanford, J. L., & Ziemke, J. R. (1994). Field (MAP) statistics. In
J. Stanford & S. B. Vardeman (Eds.), Statistical methods for
physical science (pp. 457–479). Academic Press.
Stevens, B., Duan, J., McWilliams, J. C., Münnich, M., & Neelin, J.
D. (2002). Entrainment, rayleigh friction, and boundary layer winds over
the tropical pacific. Journal of Climate, 15(1),
30–44.
Tobler, W. R. (1970). A computer movie simulating urban growth in the
Detroit region. Economic Geography,
46(sup1), 234–240.
Ver Hoef, J. M., & Boveng, P. L. (2015). Iterating on a single model
is a viable alternative to multimodel inference. Journal of Wildlife
Management, 79(5), 719–729.
Verbeke, G., & Molenberghs, G. (2009). Linear mixed models for
longitudinal data. Springer.
Von Storch, H., & Zwiers, F. W. (2002). Statistical analysis in
climate research. Cambridge University Press.
Waller, L. A., & Gotway, C. A. (2004). Applied spatial
statistics for public health data. John Wiley & Sons.
Weigel, A. P. (2012). Ensemble forecasts. In I. T. Jolliffe & D. B.
Stephenson (Eds.), Forecast verification: A practitioner’s guide in
atmospheric science (pp. 141–166). John Wiley & Sons.
Wickham, H. (2011). The split-apply-combine strategy for data analysis.
Journal of Statistical Software, 40(1), 1–29. http://www.jstatsoft.org/v40/i01/
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis
(2nd ed.). Springer.
Wickham, H., & Chang, W. (2017). Devtools: Tools to make
developing r packages easier.
Wickham, H., Francois, R., Henry, L., & Müller, K. (2017).
Dplyr: A grammar of data manipulation.
Wickham, H., & Grolemund, G. (2016). R for data science: Import,
tidy, transform, visualize, and model data. O’Reilly Media.
Wickham, H., & Henry, L. (2017). Tidyr: Easily tidy data with
“spread()” and “gather()” functions.
Wikle, C. K., & Hooten, M. B. (2016). Hierarchical agent-based
spatio-temporal dynamic models for discrete-valued data. In R. A. Davis,
S. H. Holan, R. Lund, & N. Ravishanker (Eds.), Handbook of
discrete-valued time series. Chapman & Hall/CRC.
Wilks, D. S. (2011). Statistical methods in the atmospheric
sciences (3rd ed.). Academic Press.
Wood, S. N. (2017). Generalized additive models: An introduction
with r (2nd ed.). Chapman & Hall/CRC.
Wu, C.-T., Gumpertz, M. L., & Boos, D. D. (2001). Comparison of GEE,
MINQUE, ML, and REML estimating equations for normally distributed data.
American Statistician, 55(2), 125–130.
Xie, Y. (2013). animation: An
R
package for creating animations and demonstrating statistical methods.
Journal of Statistical Software, 53(1), 1–27. http://www.jstatsoft.org/v53/i01/
Xie, Y. (2015). Dynamic documents with r and knitr (second).
Chapman & Hall/CRC.
Xu, K., Wikle, C. K., & Fox, N. I. (2005). A kernel-based
spatio-temporal dynamical model for nowcasting weather radar
reflectivities. Journal of the American Statistical
Association, 100(472), 1133–1144.
Zammit-Mangion, A. (2018a). FRK: Fixed rank kriging.
Zammit-Mangion, A. (2018b). IDE: Integro-difference equation
spatio-temporal models.
Zammit-Mangion, A. (2018c). STRbook: Supplementary package for book
on ST modelling with r.
Zammit-Mangion, A., & Huang, H.-C. (2015). EFDR: Wavelet-based
enhanced FDR for signal detection in noisy images. https://CRAN.R-project.org/package=EFDR
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression
relationships. R News, 2(3), 7–10. https://CRAN.R-project.org/doc/Rnews/
Zhang, J., Craigmile, P. F., & Cressie, N. (2008). Loss function
approaches to predict a spatial quantile and its exceedance region.
Technometrics, 50(2), 216–227.